If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9r^2=81r
We move all terms to the left:
9r^2-(81r)=0
a = 9; b = -81; c = 0;
Δ = b2-4ac
Δ = -812-4·9·0
Δ = 6561
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6561}=81$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-81)-81}{2*9}=\frac{0}{18} =0 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-81)+81}{2*9}=\frac{162}{18} =9 $
| 2*(3x+5)-)6x-37)=2x+15 | | 2=-1/3x+2(2) | | 4+x/15=3 | | 15m+4m−2m+2m+m=20 | | 32-25=x | | 6(2x-1)=-3(3x-15) | | 5=(50-4x) | | 1.5x+x=4000000 | | x(x+157)=2500 | | 2c+8-2c=3 | | 2y-+1.7=3,3 | | 20x+5=(9x-2)+40 | | H=2t^2+4t+16 | | (v+5)(-1/9)=9 | | _v+5)(-1/9)=9 | | 12x+25=1x+10 | | 19+(5x+1)=(9x-3)*2 | | 11x+16=15x | | 10=50-4x | | 12x^2-8x+77=0 | | -1/3x+5/6+2=-1/2+1/6x | | x^2+157x=2500 | | 7x(8x)=10 | | 19+(5x+1)=(9x-3)/2 | | -j=-4.76 | | 4d+2=d-8 | | 9-2x-6-13x=6 | | 19x-40-37+23=180 | | 2(3y-24)+9y=27 | | x2+7/3x+49/36=1/36 | | 7x-5-3x=7 | | (18x-9)-(5x+1)=19 |